
Scientific Visualization, 2021, volume 13, number 2, pages 1 - 9, DOI: 10.26583/sv.13.2.01 

Visualization System for Fire Detection  

in the Video Sequences 
 

N.V. Laptev1, V.V. Laptev2, O. M. Gerget3, A.A. Kravchenko4, D.Yu. Kolpashchikov5 

 
National Research Tomsk Polytechnic University 

 
1 ORCID: 0000-0003-0709-9974, nikitalaptev77@gmail.com 

2 ORCID: 0000-0001-8639-8889, vvl39@tpu.ru 
3 ORCID: 0000-0002-6242-9502, olgagerget@mail.ru 

4 ORCID: 0000-0001-6828-3279, aak224@tpu.ru 
5 ORCID: 0000-0001-8915-0918, Dyk1@tpu.ru 

  
Abstract 
The paper deals with the analysis of the visual images obtained from fire detection sys-

tems. We review the existing approaches to the analysis of video surveillance data and pro-
pose a tool for data labeling and visualization. The proposed solution for visual image analysis 
is based on a neural network (object detection technology). Recognition of hazard locations 
was carried out using the EfficientDet-D1 model. Video pre- and post-processing algorithms 
were implemented to improve visual image classification. The pre-processing was used to 
generate a frame preserving the features of objects that dynamically change over time. The 
post-processing combines the results of sequential detection of characteristic features on each 
frame, in particular, features of a smoke cloud. The results of the system operation are pre-
sented: visual image classification accuracy was 81%, while localization accuracy was 87%. 

Keywords: computer vision, neural network, object detection, video analysis, image vis-
ualization, machine learning, algorithm. 

 

1. Introduction 
Advanced analysis of visual images obtained from fire detection systems, accurate locali-

zation and performance measurements play a crucial role in preventing environmental disas-
ters and minimizing environmental damage. The importance of developing real time visual 
systems for accurate fire detection and forest fire location is beyond doubt. 

The most of existing forest fire detection systems are based on mathematical models. 
Among them the model of a forest fire as a source of infrared radiation [1] was used to high-
light forest fire contours based on infrared emission data. Another model processes the 
transparency of the atmosphere [2] based on two factors: the brightness of objects and the 
presence of suspended particles in the atmosphere. However, building reliable mathematical 
models is a complicated task that is often impossible due to a large amount of dynamic in-
formation in surveillance videos, hidden patterns between input data and the complexity of 
identifying characteristic features.  

However, the described limitations appear non-essential for a visual system based on 
technical vision. Such systems can analyze camera images and timely identify fire sources, 
which makes them suitable for early warning of fire. Fire detection systems based on tech-
nical vision are cost effective and can be used to analyze massive amounts of visual images.  

One solution based on technical vision was described in [3] and is of great interest for fire 
detection. This method was based on combining HSV and YCbCr color models. In contrast to 
traditional methods, this approach allowed additional transformations of the color space, 
which improved the quality of recognition. However, this system was focused on the static 
characteristics of the flame, which can negatively affect the ultimate detection accuracy. 
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Another solution was presented in [4]. The authors analyse temporal and spatial factors 
of fire, while using the Gaussian model to describe the HSV color model. Despite many posi-
tive aspects, the Gaussian model requires immense computation time when working with a 
large amount of data, which is unacceptable for real-time solutions as the analysis occurs 
fuzzy. 

In [5], the authors propose to use a combination of SVM and GLCM methods to detect 
and segment a hard-to-find object. This approach can also be applied to the current task in 
order to improve the detection accuracy. 

Despite several existing systems and approaches, the problem of visual image analysis 
remains relevant and understudied, including the task of precise fire detection and localiza-
tion. Meanwhile, machine learning has been successfully used to achieve high-quality object 
detection [6], [7], e.g. based on object detection technology. Therefore, the use of neural net-
works for automated surveillance and accurate forest fire detection was investigated in this 
study. 

2. Initial data 
The initial data for the study was obtained from several sources, in particular, from the 

open online resources of Nevada Seismological Laboratory (University of Nevada) [8], [9], 
Center for Wildfire Research (sponsored by the University of Split) [10], and Perm forestry 
[11]. For the purpose of direct training, all data were labeled using the SuperVisely web ser-
vice [12]. This service allows not only visualizing the labeled data, but also operating the data 
in a semi-automatic mode. The total number of collected video recordings was 1000, includ-
ing 766 videos that contained fire and 234 videos without fire. A sequence of 7 frames was ex-
tracted from each video for training. This number of frames was obtained experimentally. 
The statistics of the test frames with and without fire, as well as the number of annotated are-
as are given in Table 1. 
Table 1. Initial training and test data  

Quantity, 
pcs 

Total number of frames, 
7000 

Number of frames in the 
training set, 6300 

Number of frames in the 
test set, 700 

300 2100 4600 100 1850 4350 200 250 250 

Resolution, 
pixels 

400 
x 

400 

1280  
x  

1024 

1920 
 x  

1080 

400 
x 

400 

1280 
x 

1024 

1920 
x 

1080 

400 
x 

400 

1280 
х 

1024 

1920 
х 

1080 

3. Dynamic feature extraction algorithm 
One of the informative discriminative features in surveillance video is the shape of 

smoke, which constantly changes due to the fire dynamics. Some traditional methods of fire 
detection take this condition into account, including continuous frame change [13], back-
ground subtraction [14], frame difference and background modeling using Gaussian mixture 
model [15]. Among modern methods [16] there is a neural network approach to image pro-
cessing based on the use of generative adversarial networks. 

In this work, the emphasis was placed on the investigation and implementation of the 
frame difference method. This method demonstrates the advantage of insensitivity to scene 
changes (e.g., to lighting) and the ability to adapt to various dynamic environments with good 
stability. However, it fails to extract the complete area of an object. This work proposes an 
improved frame difference method.  

The designed algorithm for extracting dynamic features of an image based on the frame 
difference method included the following steps: 

Step 1. A video stream was converted into a sequence of frames.  
Step 2. Frames were extracted from three RGB channels at a certain interval and convert-

ed into one channel (transition to grayscale) to save computation time during the following 
steps.  



Step 3. An averaged frame was calculated according to Formula (1). This operation re-
duced camera noise and increased the stability of results.  

Further frame pre-processing was neglected, since adding, for example, the Gaussian blur 
using a 5x5 kernel lead to an accuracy drop by the average of 15-20% in the object detection 
step as demonstrated in the test results. 

Step 4. A dark frame was created based on the differences between the original and aver-
age frames. The difference was calculated according to Formula (2). 

Step 5. Noise was reduced according to Formula (3). This operation allowed highlighting 
the objects with greater dynamics, while removing extraneous noise. 

𝐹с(𝑥, 𝑦) =
1

𝑁
∗ ∑ 𝐹𝑖(𝑥, 𝑦)𝑁

𝑖=1 , (1) 

 
𝐹𝑑𝑖

(𝑥, 𝑦) = |𝐹𝑐(𝑥, 𝑦) − 𝐹𝑖(𝑥, 𝑦)|, 𝑖 = 1,2, . . 𝑁, (2) 

 

𝐹𝑟𝑖
(𝑥, 𝑦) = {𝑚𝑎𝑥𝑣𝑎𝑙, 𝑖𝑓 𝐹𝑑𝑖

(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ, 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, }, (3) 

where 𝐹с(𝑥, 𝑦) – averaged frame, 𝑁 – the total number of processed frames,  𝐹𝑖(𝑥, 𝑦) – the 
current frame of the sequence, 𝐹𝑑𝑖

(𝑥, 𝑦) – the difference between the current frame of the se-

quence and the averaged frame. 𝐹𝑟𝑖
(𝑥, 𝑦) – the resulting frame after noise reduction. 

Since the air flow and combustion properties cause a constant change in the flame pixels 
[17], pixel images without fire can be removed by comparing two consecutive images. 

In should be noted that ten-second recordings from static cameras were considered in the 
experiments. Each video sequence was divided into frames, where seven frames were extract-
ed at equal time intervals. It was expected to receive four processed frames (number 1, 3, 5, 7) 
at the output for high-accuracy fire detection. 

4. Object detection 
After pre-processing, each received frame was sequentially processed using the Effi-

cientDet-D1 object recognition model. The general architecture of EfficientDet [18] largely 
corresponds to the paradigm of one-stage detectors. It is based on the EfficientNet model 
previously trained on the ImageNet dataset. A distinctive feature of the EfficientDet-D1 mod-
el [19]–[22] is an additional weighted bi-directional feature pyramid network (BiFPN) fol-
lowed by class and block networks used to generate predictions of object classes and bound-
ing boxes (boxes), respectively. A box had four parameters: two coordinates (x, y) for the up-
per left corner and two coordinates for the lower right corner. The network was trained using 
frames labeled with boxes indicating the class. 

The other object detection models considered for the experiments include: EfficientDet-
D0, EfficientDet-D1, SSD ResNet50 v1, SSD MobileNet v2, Faster R-CNN ResNet50 V1, Fast-
er R-CNN Inception ResNet. All      models were trained under the same conditions. The qual-
ity of visual image analysis based on the neural network models was assessed according to 
three criteria: Mean Average Precision (MAP), Accuracy (classification accuracy), and Speed 
(time of processing one frame). The results are shown in Table 2 and Table 3. 

 
Table 2. Model performance on the test set 

Model Input size 
Weight, 

mb 
Accuracy MAP Speed, s 

EfficientDet-D0 512x512 18.6 0.6 0.336 0.03 
EfficientDet-D1 640x640 24.9 0.69 0.514 0.11 
SSD ResNet50 v1 640x640 10.1 0.39 0.64 0.08 
SSD MobileNet v2 640x640 7.215 0.64 0.46 0.04 
Faster R-CNN ResNet50 V1 640x640 4.597 0.45 0.32 0.26 
Faster R-CNN Inception ResNet V2 640x640 18.2 0.55 0.12 0.58 

 



Table 3. Dependence of model performance on image resolution 

Model 
Accuracy 

400x400 1280x1024 1920x1080 
EfficientDet-D0 0.57 0.53 0.64 
EfficientDet-D1 0.51 0.71 0.63 
SSD_Resnet50_v1 0.49 0.3 0.37 
SSD MobileNet v2 0.50 0.75 0.59 
Faster R-CNN ResNet50 V1 0.53 0.45 0.39 
Faster R-CNN Inception ResNet V2 0.41 0.62 0.54 

 
As illustrated in Tables 2-3, EfficientDet-D1 showed the highest efficiency. It is also worth 

noting the efficiency of the SSD ResNet50 model in object localization. On the contrary, Fast-
er R-CNN Inception ResNet V2 demonstrated the lowest efficiency. 

5. Post-processing  
The post-processing algorithm is laid out in Figure 1. It includes the following sequence of 

actions: four frames of the same perspective but spaced in time arrived at the input of the 
neural network. Since the smoke has a very unstable structure (density, variability of shape, 
direction of movement), the shape of a smoke cloud was different in all frames. Thus, in most 
cases, the algorithm selected the most discriminative areas of smoke at a given time, which 
can be clearly seen in Figure 1. After this step the resulting frame had up to 20 bounding box-
es, which highlighted the same object with different probabilities. Then two or more boxes 
that overlapped more than 25% were merged. This approach made it possible not only to de-
tect fire with great confidence, but also to localize it with increased accuracy. Figure 2 shows 
the impact of the algorithm on system performance: the resulting image before post-
processing (a, the detection probability 59 and 17 %) and after post-processing (b, the detec-
tion probability 65%). Figure 3 shows a histogram, which reflects the dependence of the fire 
detection accuracy on the area of box overlapping at the stage of merging. 

 

 
Fig. 1. The principle of the post-processing algorithm 



 

 

(a) (b) 
Fig. 2. The result of the post-processing algorithm 

 

 
Figure 3. The dependence of the detection accuracy on the area of box overlapping 

 
It should be noted that only those bounding rectangles (boxes) were applied to the ana-

lyzed frames, which had the probability of more than 15%. The percentage of overlapping was 
calculated according to the IOU (Intersection over Union) metric using Formula (5). The final 
box area was calculated according to Formula (6). The overall system result is presented in 
Table 4. The probability of detecting and merging bounding boxes was determined empirical-
ly. The aim of the experiments was to maximize the number of fire detections and minimize 
the number of false alarms. 

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
, (5) 

С𝑡𝑜𝑡𝑎𝑙 =
С1

2 + С1
2 + ⋯ + С𝑛

2

∑ 𝐶𝑛
, (6) 

where Area of Overlap – the area of overlapping between the predicted areas 1 and 2, Ar-
ea of Union – the total predicted area, С𝑖 – the area of the 𝑖-th box. 

6. Results 
The sequence of steps in the video processing algorithm is visualized in Figure 4, where 

the original image is marked (a), the conversion of a color frame to grayscale is marked (b), 
the result of subtracting the averaged frame from the sequence frame according to Formula 
(2 ) is marked (c), and the resulting image after noise reduction according to Formula (3) is 
marked (d). The resulting frame has a sharp      outline of smoke and a minimal number of 
objects, which remained in the image due to various types of noise. 
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Figure 4. Visual interpretation of steps in the video processing algorithm 

 
Figure 5 illustrates the results of detecting fire hazards. These are output frames. An ex-

ample of correct detection is marked (a). In this frame the entire area of smoke was enclosed 
in a bounding box. Image (b) gives an example of detecting objects that fit into the class of 
smoke, but do not belong to the class of fire hazards. An example of partially correct opera-
tion of the system is marked (c). Here a fire hazard was detected, but an object that should 
not have been classified as fire hazards was also detected with less probability. System mal-
function is marked (d). The detected object has discriminative features that are similar to a 
smoke cloud, but is not a fire hazard. 

 

  

(a) (b) 

 

 

(c) (d) 
Figure 5. Object detection results 



Table 4. System performance 

Model 
Classification Localization 

Accuracy N FN P FP MAP 
EfficientDet-D0 0.67 

234 

124 

466 

107 0.72 

EfficientDet-D1 0.81 88 45 0.87 

SSD ResNet50 v1 0.61 197 76 0.79 

SSD MobileNet v2 0.69 94 123 0.70 
Faster R-CNN ResNet50 V1 0.58 175 119 0.70 
Faster R-CNN Inception Res-
Net V2 

0.62 128 111 0.74 

 
In Table 4, N is the number of negative frames (frames with no fire), FN is a false nega-

tive detection result (fire was detected in the frames with no fire), P is the number of positive 
frames (frames with fire), FP is a false positive result (no fire was detected in the frames with 
fire). 

Therefore, the EfficientDet-D1 architecture has shown the greatest efficiency in visual 
image analysis and smoke detection. Its classification accuracy was 69%, and fire localization 
accuracy exceeded 51%. Further use of the post-processing algorithm makes it possible to re-
duce the fire detection error in frames with no smoke, which can increase classification accu-
racy up to 81% and localization accuracy up to 87%. Localization accuracy can be raised up to 
92%, but this will drop classification accuracy due to numerous system operations on frames 
with no fire. 

7. Conclusion 
The proposed in this work technology has been used to solve the problem of analyzing 

visual images obtained from fire detection systems. The approach outlined in the article was 
capable of removing noise and highlighting dynamic features when visualizing images. Thus, 
only the objects with the most pronounced features remained in analyzed frames, which had 
a positive effect on the detection and localization accuracy. 

An important characteristic of the developed system is the image pre-processing stage. 
Besides, the use of the dynamic feature extraction algorithm makes it possible to process 
frames of different resolutions. This expands the application of the technology, as it can be 
used for cameras with different resolutions. 

The post-processing algorithm also occupies an important place in the operation of the 
visual system. During the experiments, it increased the localization accuracy by 36% and the 
classification accuracy by 12%, which is a significant improvement for the detection problem. 
The final demonstrated classification accuracy was 81% and localization accuracy was 87%. 

The next important attribute of the system is visualization. The fire detection results were 
visualized using the capabilities of the Tensorflow library. High-quality image visualization 
and analysis is important when an operator makes a decision. 

At the moment, the authors continue solving the problem of additional classification for 
various negative visual images others than a smoke cloud, which should significantly increase 
the efficiency of the presented technology. 
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